Using Intelligent Self-Organizing Osaka University **Bioparticle Swarms for Uniform Occupancy of Arbitrary Dimensions** Anthony Abraham¹, Juan Lorenzo Hagad², Satoru Iwasaki², Takuya Obuchi², Jian Yang²

¹Osaka University, Graduate School of Frontier Biosciences,

²Osaka University, Graduate School of Information Science and Technology

Introduction

Swarms

In nature, many organisms are known to exhibit complex collective behaviour and coordination. This can be seen in schools of fish, insect colonies, and certain species of bacteria^[1]. This seemingly intelligent behaviour is a result of relatively simple interactions between individuals in the swarm; and their environment.

Mathematical Model

Imitation of chemotaxis of bacteria

In order to describe the motion of bio-particle agents, we refer to Chemotaxis of Bacteria. We think that their motion follows the equation;

Coordinated behaviour in bird, fish and insect swarms

Following the growing popularity of micro-scale biomimetics; we aim in this study to investigate the applications of swarming algorithms towards micro-scale biological and pseudobiological agents, with the goal of intelligent micro-scale swarms.

Specific Objectives

Intelligent Micro-scale Swarms

 C_b : Concentration of bio-particle agents D_b : Diffusion coefficient of bio-particle agents $(f_a - f_r)$: Velocity of advections

One of our goals is mathematical analysis of this equation. Different behaviors appear by varying parameters.

Underlying Work

Uniform Occupancy of Unitargeted Area

The whole work is divided into several parts, including: 1. A swarming model for uniform filling of an area.

2. A swarming model for searching and navigation for multitargeted areas.

- 3. To do the analysis and verification with contrasting the agentoriented model with corresponding mathematical model.
- 4. The bio-engineering implement of the swarm.
- 1. To find existing mechanisms for micro-organism swarming behaviours.
- 2. To define a communication and behaviour switching mechanism for simple bio-particle agents.
- 3. To define a formal, parametric swarming model for uniform filling of the multi-targeted area in a given region, Fig.1.
- 4. To test the robustness and efficiency of the final model as compared to simple swarming behaviours.

Analogy of Chemotaxis of Bacteria

Fig.2. Bacteria's behaviour in different concentration conditions^[2].

Fig.1. Uniform filling of the multi-targeted region in an area.

(A) Initialization Phase (C) Halt Phase (B) Distribution Phase

Fig.3. Uniform filling of one area.

Reference

[1] 1. Shklarsh, A., Ariel, G., Schneidman, E. & Ben-Jacob, E. Smart swarms of bacteria-inspired agents with performance adaptable interactions. PLoS ComputBiol.7,e1002177(2011). [2] Waters, C. M. & Bassler, B. L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319-46(2005).